Search results

1 – 7 of 7
Article
Publication date: 26 June 2009

Kati Kokko, Hanna Harjunpää, Pekka Heino and Minna Kellomäki

The purpose of this paper is to investigate the influence of composite coating structure on the reliability of adhesive flip chip joints. The need for conformal coating is…

Abstract

Purpose

The purpose of this paper is to investigate the influence of composite coating structure on the reliability of adhesive flip chip joints. The need for conformal coating is considered, especially for medical applications, and medical sterilization is also considered.

Design/methodology/approach

Two test lots were assembled and one of them was sterilized using gamma sterilization. Both test lots were coated first with epoxy and then with Parylene C, resulting in a composite coating structure. The reliability was studied using a constant humidity test and the failure analysis was performed with cross‐sections and scanning electron microscopy analysis. These results were compared to earlier research results on conformal coatings.

Findings

The reliability of both test lots proved to be good. The composite coating structure shields the joints from humidity and improves the reliability compared to non‐coated test samples. When the conformal coating was compared to the pure Parylene C coated test lot, the reliability was almost the same. This leads to the conclusion that the epoxy layer in the composite coating structure has no value when long‐term reliability is considered. Gamma sterilization does not greatly affect reliability. The epoxy coating under the Parylene C layer cracked during reliability testing.

Originality/value

The paper shows the influence of composite coating structure on the reliability of adhesive flip chip joints, particularly important in medical applications.

Details

Soldering & Surface Mount Technology, vol. 21 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 June 2010

Kati Kokko, Laura Frisk and Pekka Heino

The purpose of this paper is to study the effect of conformal coating on the thermal cycling reliability of anisotropically conductive adhesive film (ACF) joined flip chip…

Abstract

Purpose

The purpose of this paper is to study the effect of conformal coating on the thermal cycling reliability of anisotropically conductive adhesive film (ACF) joined flip chip components on FR‐4 and polyimide (PI) substrates.

Design/methodology/approach

Test chips were joined using flip chip technology and an anisotropically conductive adhesive. The conformal coating used was parylene C and it was applied using the vapour deposition polymerisation method. The reliability of ACF joined flip chip components on FR‐4 and PI substrates was evaluated using −40/+85°C thermal cycling testing. Test lots with and without parylene C coating were studied. Additionally, one test lot with initial moisture inside the coating layer and a PI substrate was subjected to the test. The reliability results were analyzed using Weibull analysis and failure analysis was performed to study the failure mechanisms using cross sectioning and optical and scanning electron microscopy.

Findings

The results show a clear difference between the FR‐4 and PI substrate materials. PI substrate material proved to be reliable enough to withstand the thermal cycling testing. Two different occurrences of the first failures are seen and analyzed with FR‐4 substrates. The conformal coating layer did not seem to impair the reliability. Parylene C coating proved to be a reliable choice to protect, and even improve, the thermal cycling reliability of flip chip devices.

Originality/value

Usually, conformal coatings are studied in humidity tests. However, it is also vital to know whether the conformal coatings affect the reliability in thermal cycling and there is a lack of reliability studies in this area. This paper gives reliability data for conformal coating users about the influence of thermal cycling.

Details

Soldering & Surface Mount Technology, vol. 22 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 September 2009

Kati Kokko, Hanna Harjunpää, Anna‐Maija Haltia, Pekka Heino and Minna Kellomäki

The purpose of this paper is to study epoxy and parylene C‐coated samples. These coatings are used to protect the electronic devices from harsh environments. The effect of these…

Abstract

Purpose

The purpose of this paper is to study epoxy and parylene C‐coated samples. These coatings are used to protect the electronic devices from harsh environments. The effect of these conformal coatings on electronics reliability is considered.

Design/methodology/approach

Epoxy coating is applied using dip coating and parylene C is applied with the vapour deposition polymerisation method. Test chip used is joined using flip‐chip technology and an anisotropically conductive adhesive. Reliability of the test samples is evaluated in a constant humidity test, where test conditions are 85°C and 85%RH. The test lasts 4,000 h. Failure analysis is carried out by cross‐sectioning failed samples and using scanning electron microscopy for closer analysis.

Findings

The results show variation in the reliability of adhesive joints with different conformal coating materials. Failure analysis highlights explicit failure mechanisms. Adhesion testing is also carried out on the test samples after constant humidity testing. The results of these reliability tests indicate clearly that parylene C is a more reliable choice of conformal coating than epoxy.

Originality/value

The paper shows the influence of certain conformal coatings on the reliability of adhesive flip‐chip joints. In medical applications, reliability plays an important role.

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 October 2006

Laura Frisk and Kati Kokko

The purpose of this study is to investigate the effect of chip and substrate thickness on the thermal cycling reliability of flip chip joints assembled with anisotropic conductive…

Abstract

Purpose

The purpose of this study is to investigate the effect of chip and substrate thickness on the thermal cycling reliability of flip chip joints assembled with anisotropic conductive adhesives (ACA) on FR‐4 substrates.

Design/methodology/approach

Four test lots were assembled with two substrates and two test chips. The thicknesses of the substrates were 710 and 100 μm and the thicknesses of the chips were 480 and 80 μm. To study the effect of the bonding pressure each test lot contained four test series bonded with four different bonding pressures. The reliability of the test samples was studied using a temperature cycling test.

Findings

The reliability of the test lots varied widely during the test. The test lot with a thin substrate and thin chip demonstrated considerably better reliability than the other test lots. In addition, the test lots had different failure mechanisms. After the test delamination was found in every test lot except the one assembled with the thin chip and the thin substrate.

Originality/value

The work shows that the thermal cycling reliability of ACA flip chip joints can be markedly increased by using thinned chips or reducing the thickness of the substrate.

Details

Soldering & Surface Mount Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Content available
Article
Publication date: 26 June 2009

Martin Goosey

452

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 3
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 29 June 2010

Martin Goosey

257

Abstract

Details

Soldering & Surface Mount Technology, vol. 22 no. 3
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 18 September 2009

Martin Goosey

249

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

1 – 7 of 7